Integrating Constitutive Gene Expression and Chemoactivity: Mining the NCI60 Anticancer Screen
نویسنده
چکیده
Studies into the genetic origins of tumor cell chemoactivity pose significant challenges to bioinformatic mining efforts. Connections between measures of gene expression and chemoactivity have the potential to identify clinical biomarkers of compound response, cellular pathways important to efficacy and potential toxicities; all vital to anticancer drug development. An investigation has been conducted that jointly explores tumor-cell constitutive NCI60 gene expression profiles and small-molecule NCI60 growth inhibition chemoactivity profiles, viewed from novel applications of self-organizing maps (SOMs) and pathway-centric analyses of gene expressions, to identify subsets of over- and under-expressed pathway genes that discriminate chemo-sensitive and chemo-insensitive tumor cell types. Linear Discriminant Analysis (LDA) is used to quantify the accuracy of discriminating genes to predict tumor cell chemoactivity. LDA results find 15% higher prediction accuracies, using ∼30% fewer genes, for pathway-derived discriminating genes when compared to genes derived using conventional gene expression-chemoactivity correlations. The proposed pathway-centric data mining procedure was used to derive discriminating genes for ten well-known compounds. Discriminating genes were further evaluated using gene set enrichment analysis (GSEA) to reveal a cellular genetic landscape, comprised of small numbers of key over and under expressed on- and off-target pathway genes, as important for a compound's tumor cell chemoactivity. Literature-based validations are provided as support for chemo-important pathways derived from this procedure. Qualitatively similar results are found when using gene expression measurements derived from different microarray platforms. The data used in this analysis is available at http://pubchem.ncbi.nlm.nih.gov/andhttp://www.ncbi.nlm.nih.gov/projects/geo (GPL96, GSE32474).
منابع مشابه
Integrative analysis of proteomic signatures, mutations, and drug responsiveness in the NCI 60 cancer cell line set.
Aberrations in oncogenes and tumor suppressors frequently affect the activity of critical signal transduction pathways. To analyze systematically the relationship between the activation status of protein networks and other characteristics of cancer cells, we did reverse phase protein array (RPPA) profiling of the NCI60 cell lines for total protein expression and activation-specific markers of c...
متن کاملMACE: mutation-oriented profiling of chemical response and gene expression in cancers
SUMMARY The mutational status of specific cancer lineages can affect the sensitivity to or resistance against cancer drugs. The MACE database provides web-based interactive tools for interpreting large chemical screening and gene expression datasets of cancer cell lines in terms of mutation and lineage categories. GI50 data of chemicals against individual NCI60 cell lines were normalized and or...
متن کاملAntibacterial and anticancer activities of biosynthesized silver nanoparticles using Artemisia khorassanica extract: Bax and Bcl2 apoptosis gene expression analysis
Introdution: Recently, the biosynthesis of nanoparticles and the use of medicinal plants for the synthesis of silver nanoparticles (AgNPs) has attracted researchers due to its low cost and eco-friendly characteristics. The aim of this study was to synthesis of AgNPs using Artemisia khorassanica and analysis of its antibacterial and anti-cancer activities. Methods: In this experimental study, e...
متن کاملTherapeutic Discovery A 71-Gene Signature of TRAIL Sensitivity in Cancer Cells
TNF-related apoptosis inducing ligand (TRAIL) is a promising anticancer agent because of its ability to selectively induce apoptosis in cancer cells but not in most normal cells. However, some cancer cells are resistant to TRAIL cytotoxicity thereby limiting its therapeutic efficacy. Using genome-wide mRNA expression profiles from the NCI60 panel and their differential sensitivities to TRAIL-in...
متن کاملA 71-gene signature of TRAIL sensitivity in cancer cells.
TNF-related apoptosis inducing ligand (TRAIL) is a promising anticancer agent because of its ability to selectively induce apoptosis in cancer cells but not in most normal cells. However, some cancer cells are resistant to TRAIL cytotoxicity thereby limiting its therapeutic efficacy. Using genome-wide mRNA expression profiles from the NCI60 panel and their differential sensitivities to TRAIL-in...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 7 شماره
صفحات -
تاریخ انتشار 2012